FOR -488
MANUAL

(© COPYRIGHT 1985 BY METRABYTE CORPORATION

]

MEC e

3,85 ‘(003809



e W S W WP D M G W WU D S e v S R G Sy G B S P e R e b v e D A e G L AL W D D G D I A D S L e b b e o

WARRANTY

ALl products manufactured by MetraByte are warranted
against defective materials and workmanship for a period
of One Year from the date of delivery “to the original
purchaser. Any product that is found to be defective
within the warranty period will, at the option of |
MetraByte, be repaired or replaced. This warranty does
not apply to products damaged by impquQPFUSe.

o S S G e b B e St ey S e G d B S G e e e g e L R T S G e R G S e e Gn S S R AR WS TR G EE R ED Gn S Am Gn Ee s

!| WARNING !

MetraByte Corporation assumes no liability to damages
consequent to the use of this product. This product s
not designed with components of a Level of reliability
suitable for use in life support systems.

MetraByte Corporation, 440 Myles Standish Boulevard, Taunton
Mass. 02780 U.S.,A. Phone: (617) - 880 -~ 3000 Telex: 503989




[\ AN]
) =

INTRODUCTION =—=======--ommmomm oo

GPIB (IEEE-488) DOS RESIDENT DRIVER =—=-=--—--

GPIBDVR.COM PROGRAM OVERVIEW ----===—c--———=
LOADING THE GPIBDVR.COM FILE ~=---=-w=c===—-

ENTRANCE REQUIREMENTS FOR ALL HIGH
LEVEL LANGUAGES ====-=mmemcmm oo m

ENTRANCE REQUIREMENTS FOR ROMSEG:0000H
ENTRY POINT =rmmmmeo e oo e e
ENTRANCE REQUIREMENTS FOR ROMSEG:0006H
ENTRY POINT =-m=-ccmcccocacncmccmcccmacoceoe
ENTRANCE REQUIREMENTS FOR ROMSEG:DO0O0AH
ENTRY POINT =—=-=-—mmmm oo mmm oo
ENTRANCE REQUIREMENTS FOR ROMSEG:0074H
ENTRY POINT =—==--——mmmm oo mmmmm e mmmmm oo

LIBRARY OVERVIEW —-=-m-mececmeemm e oo e
IMAGE SPECIFIERS ~=========-—m——mmmeme——————
IMAGE TERMINATORS wrwr---rmemermccr e e
FLAG RETURN CODES ——-==vc-cmmommmmmmm oo mm oo
USER COMMANDS (FORTRAN LIBRARY) www=scccow-w
ABORT ~===--mcrrccccnr s cmmm s
CLEAR dev1l, dev2, .... devN -=-==-—-—cer=-—--
CONFIG  TALK=d1/MTA,LISTEN=dev2,.,(MLA) ---
ENTER dev.secad [image] -----————————--—-
EOI devlimagel] -——=~==--ccmmrmmmrrcr e
LOCAL devl, dev2, ... devN =--——-e—ceee—--
LOCKOUT dev1, dev2, ... devN —-—-——=——c-—e0-

ouUTPUT dev1l, dev2, ... devN [imagel] -~=~--
PARPOL === —m o mm oo e e

PASCTL dey =rmmmrmrrmm e
PPCONF dey =~====- S e
PPUNCF dey =-rmememrmmem e e e -
REMOTE devl, dev2, .... devN =-==-ccccvcaco
REQUEST (1) mm—ommm—mmo e
RXCTL =-emomcommm o r e s m e
STATUS dev.secad ~~~mrmrmmmmmm—m—m e — e — e

SYSCON MAD=dev,CI{=n,NO0B=n,BAO=al,BA1=a2 -
TIMEOUT = m e e o e e e i ot e e i it e o o o e e
TRIGGER dev1l, dev2, .... deyN =---mwerwe——c-—-

10

11

20

22

23

24

25
25
25
26
26

27
27

29

30

31

33

34

35

36

37

38




5.0

INDEX

""" FORTRAN LIBRARY FUNCTIONS ONLY ™"~

ITEST (var, #NUM)}) --—-—---—-———c——mrcem 39
PRINT/h (var, Nob) =-~=—==eeccecc e 40
HIGH LEVEL LANGUAGE LIBRARIES —-=--—-cemmeune [41]
FORTRAN LIBRARY =—=m==m—-mememacmooomooomo 41
PASCAL / TURBO PASCAL LIBRARY -=-=-m—m—cmmee- 42
CHANGING THE ROM SEGMENT CCHGVEC.EXE] -—-—--
PROGRAMMING EXAMPLES —--=====---mmmomoommee

FORTRAN EXAMPLES ——--==——===mm-emmmmmomomoe



INTRODUCTION

1.0 INTRODUCTION

The GPIBDVR.COM program-is a DOS resident driver Extension
for use with the MetraByte IE-488 interface card. The resitent
driver provides all the same functions and commands as the Basic
ROM Interpreter plus the additional capability of Linking to all
high Llevel and low level Languages on the market today. The
resident driver Extension is wWwritten in 8086/8088 assembly
language and will run an any MS$-DO0S (1) compatible computer using
the 8088/8086 instruction set.

The driver is accessed via a software interrupt in the range
of F1 to FF (hex). This minimizes the effects of using a large
portion of compiler code area when using the interpreter.

The following sections will describe how to Load the driver
extension and change the entrance characteristics for full multi-
user / multi-task operation. The drijver is capable of handling
two IE-488 boards under a multi-user / multi-task environment.
ALL COMMAND STRING formats are the same as explained in the IE-
488 manual. This manual will explain the variations of the
different string and variable pointer constraints of the various
compilers on the market. This manual has a separate operation
section for each of the Llanguages specified (FORTRAN,TURBO
PASCAL, and LARGE/SMALL models).

(1) MS-DO0S is a trade mark of MicroSoft Corp. page 1



2.0 GPIB (IEEE-488) RESIDENT DO0S DRIVER FOR IE488 INTERFACE

2.1 GPIBDVR.COM OVERVIEW

The file GPIBDVR.COM s the main DOS resident driver
extension. This file should be loaded once during power up or
hefore the IE-488 board is used. The functions and commands the
DOS resident driver extension will recognize are the same as
shown in Chapter 4.0 (USERS COMMANDS) in this manual and the IE-
488 manual. The DOS resident driver extension intercepts the ROM
interpreter at the entry point and conditions the variable
pointers on the STACK to conform to the ROM command Line
interpreter. This way only a small patch is required to Link to
any new compiler presented on the market today or in the future,
This resident interpreter will in fact Llink to any language with
very Little programming. The Llibraries included are FORTRAN and
BASIC Libraries which setup the pointers to the variables in
various ways and save special registers Like SI and DI that may
be used with different compilers such as the new MicroSoft €
compiler version 3.0. TURBO PASCAL (trade name of Borland
International) file is included (IE488TUR.COM) and may be changed
to IE488.C0M when compiling the .PAS program. There is a
separate section on TURBO PASCAL programming in this manual.

2.2 LOADING THE GPIBDVR.COM FILE

Loading the file is straightforward. The default vector
lLink is set at F1 hex. This means an INT OF1H instruction will
enter the extension. Once the driver extension is lLoaded only
restarting the system (powerup) will remove the driver extension.
The resident driver extension cannot be reloaded at the same
vector, an error message will be displayed acknowledging this
action. Entering the following will lLoad and keep resident the
driver interpreter.

A>GPIBDVR <enter>
METRABYTE GPIB DRIVER LOADED (c)} 1985
A>
The driver is now part of the P0S system and is accessed
via the F1 hex vector software interrupt.

LOADING AT A DIFFERENT VECTOR

To Load the GPIBDVR.COM interpreter at a different vector
between F1 and FF hex just enter the vector after the file name.

page 2



2.0 GPIB (IEEE-488) RESIDENTY DOS DRIVER FOR IE488 INTERFACE

A>GPIBDVR F3 <enter>

METRABYTE GPIB DRIVER LOADED (cf 1985
A>

The driver is lLoaded and may be accessed via the F3 hex
software interrupt. This VECTOR is Loaded in the IE488 ROMNM
interpreter card when initialized in order to inform the ROM
interpreter where the driver is located. Access to the driver is
automatic when the interpreter is called.

If the driver is reloaded at the same vector such as:

A>GPIBDVR F3 <enter>
METRABYTE GPIB DRIVER ALREADY INSTALLED.

A>

page 3



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

The DOS resident driver Extension is setup foré4 variations
of Linking. One of the main differences between different types
of compilers is the way STRING variables are handled. The FORTRAN
compiler (MicroSoft ver 3.2) does not pass the byte count for the
character variable. This is a fixed lLength string assignment. The
TURBO PASCAL (Borland Int.) and the MicrSoft PASCAL pass the
byte count as the first byte in the string. The BASIC Compiler
(MicroSoft) uses a four byte STRING DESCRIPTER where the first
word is the byte count and the second word is the offset pointing
to the first character. The BASIC Interpreter (MicroSoft) uses a
three byte string descripter where the first byte is the byte
count (255 max.) and the 2nd and 3rd byte are the offset pointer
to the first character in the string. Some compilers pass the
variable data on the stack while others pass either offsets (2
byte pointers ) or both segments and offsets (4 byte pointers).
The variations are endless and can become confusing to over come
in a multi-language environment. The DOS resident driver
extension software provides the basic tools to Link to all types
of compilers while maintaining full command string similarity.
Thisal lows easy upgrades in the event the compiler manufacturers
change the assembly language Link requirements to the compiler.

The ROM interpreter has five entry points and two coded return
points for reseting the variables on the STACK before returning
with a FAR RET instruction. The fol lowing is a description of the
interpreter entrance requirements.

The entrance offsets are:

1: FULL STRING DESCRIPTER 2 BYTE POINTERS (DS = DATA SEGMENT)
DOS RESIDENT DRIVER EXTENSION NOT REQUIRED
ASSEMBLY LANGUAGE PREFERRED LINK ENTRY

ROMSEG: 00004 -~= BASIC INTERPRETER (3 byte string desc.)
ROMSEG:0002H === BASI{ COMPILER (4 byte string desc.)

2: NO STRING DESCRIPTER & BYTE VARIABLE POINTERS
(requires DOS resident driver extension)
LIBRARY FILE =-- IE488LRG.LIB

ROMSEG:0006H ~=~~ LARGE MODEL (SEG:0FF variable pointers)
3: NO STRING DESCRIPTER 2 BYTE VARIABLE POQINTERS

(requires DOS resident driver extension)
LIBRARY FILE -- IE48BSML.LIB

ROMSEG:000AH —=—= SMALL MODEL (OFFSET variable pointers)
DS = data segment for all variables
4z SPECIAL CASE ENTRANCE FOR ADVANCED PROGRAMMERS
CMDLINE ~== USER SOFTWARE LOADS COMMANDS STRING

AND DATA/FLAG SEGMENTS THEN EXECUTES.

page &



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

ROM/RAM MEMORY MAP

The following is a memory layout of the 16 K byte IE488
interpreter. The GPIB Interpreter contains 12K byte of ROM and 4K
bytes of static ram. Entry points 0006 & O0OOA requirethe DOS
resident driver extension. Entry points 0000,0002,0074 are fully
implemented in the ROM interpreter and do not require the DOS
driver extension.

GPIB IEEE488 16 K BYTE INTERPRETER MAP

HEX ADDRESS

ROMSEG:0000 3 hyte string descripter entrance peint
ROMSEG:0002 4 byte string descripter entrance point
ROMSEG:0006 No string desc. (4 byte variable pointers)
ROMSEG:000A No string desc. (2 byte variable pointers)
ROMSEG:0074 command line interpreter entry point

vseg:voff, fseg:foff variables set
advanced programming entry point

{12 K ROM interpreter}

ROMSEG:3000 |=~===---==—= RAM BUFFER BEGINS ———==—m-——=—mm-
INTERNAL RAM BUFFERS FOR INTERPRETER
2 Kbytes
|
ROMSEG;3800 |===r-=mrecmcoccmc e e e e

USER RAM AREA FOR SCRATCH PAD

2048 bytes
NOT USED BY INTERPRETER
ROMSEG:3FFF [=ewsececam—- END OF RAM BUFFERS rremeveemccccna— |
ROMSEG = is the switch address the user selected at

installation. This is on a 16K boundary anywhere in the 1 Meghyte
address space.

page 5



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

3.1 ENTRANCE REQUIREMENTS FOR ROMSEG:0000H HIGH LEVEL LANGUAGES

Thisentry point requires the use of a full string descripter
of the three byte type. The first byte will contain the byte
count and the next two bytes contain the offset into the DS data
segment of the first character in the string. The FLAG and
BASE_ADDR variables are always 2 byte integers and are pointed to
by the offset pushed on the stack. The last variable is the DATA
VARIABLE which may be string or integer. If the VARIABLE is a
string then the offset into the DS segment will point to the
three byte string descripter. The first variable COMMAND is
always a string and is decoded that way. The command string will
contain a character which will define the VARIABLE type when
interpreted, (see COMMANDS in the IE488 manual chapter 4.0). The
BASIC Interpreter uses this entry point when a CALL IE488(var...)
is executed.

ASSEMBLY LANGUAGE LINK

ThelE488 interface card also allows the user to use all the user
commands as described in section 4.0 (USER COMMANDS) using the
same parameter passing conventions as the BASIC Interpreter. The
user should be familiar with the 8086/8088 assembly language
format before attempting to utilize this function. The user will
initiate a FAR CALL to the ROM (the address of the switch
settings selected for the ROM segment on the IE488). The Stack is
used to transfer all variable pointers and data. The DS register
is the data segment pointer for the variable. The segment will
be the same value as the switch setting on the IE488 interface
board. The user should save any register contents which he does
not want destroyed. The interface to the ROM Interpreter has two
entry points, the first starting at the ROM_SEG:0000 and the
second at ROM_SEG:0002. The main difference between the two is
the way in which the string variables are interpreted. The first
entry at ROM_SEG:0000 expects the string descripter to be three
bytes. This Limits the string lLength to 255 bytes. The second
entry point at ROM_SEG:0002 expects the string descripter to be
four bytes Long, thus allowing a maximum of 32767 bytes for a
string Length (15 bits). The example following uses the first
entry and sets up the string descripter accordingly. The second
entry point is primarily used for the IBM Basic Compiler Link
which uses a four byte string descripter. The interpreter assumes
that DS is the only data segment for the variables passed to it
and a correct DS should be insured before entry to the
Interpreter.

There is also available an assembly Llanguage macro Library for
the IEEE488 interface board which allows the use of MACRO's
similar to the Basic CALL statement for all the commands. This
1IEEE488 MACRO Library allows the user to Link to assembly
language with the same format as the command string.

page 6



5.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

EXAMPLE:
DATA  SEGMENT  DATA
e BOARD CONTROL DATA —=--===-m-—-——— e
IE488 ROM_SEG 0D 0CC000000H ;C000:0000 pointer to ROMS
RTN_FLAG DW 0000 ;return flag code variable
BASE_ADDRESS bWw 0000 ;board number 0 (first board)
P s e e ———— COMMAND STRING —=-c-srecmm——mm—mmm e
: string descripter same as the Basic Interpreter
CMD_ STRING DB *OUTPUT 11,12,14(%,2,15]"
CMD_DESCRP DB $ - CMD_STRING ;Byte c¢ount
DW  CMD_STRING
e STRING DESCRIPTER / DATA ARRAY ~==-==m--=—-coo-
: string descripter same as the Basic Interpreter
DATA_ ARRAY DB '"THIS ISTHEDATATO TRANSFER',10,12
DATA DESCRP DB $ - DATA_ARRAY ;sbyte count
DW DATA_ARRAY ;pointer to data
jommemmmme e VARIABLE POINTERS FOR COMMAND ===-r-we===—--
VARIABLE_1 DW OFFSET CMD DESCRPT '‘command
VARIABLE 2 DW OFFSET STRING DATA 'data string
VARIABLE 3 DW OFFSET RTN_FLAG "return flags
VARIABLE 4 DW OFFSET BASE_ADDRESS 'poard number
DATA ENDS
PR atainlately SETUP STACK AND EXECUTE COMMAND -=--=-=-=----
IE4LBS8 PROC NEAR
MOV SI,OFFSET VARIABLE 1 ;get pointers
PUSH [SI1 :stack command
PUSH [SI+2] ;stack variable
PUSH [S8I+4] ;stack flag
PUSH [SI+é63] ;stack base address
CALL DWORD PTR IE4B8 ROM SEG ;call device driver

RETURN: CMP RTN FLAG,00

JNE ERROR_HANDLER

.--- COntinue users program

2 CMRhD
< [=NL N

;any errors on return ?
;exit to error handler

page 7



5.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

The stack FRAME or STRUCTURE at the ROM entry point is
shown. This structure must not be changed in any way. The data
segment for all pointers is assumed to be the DS segment

register. This register must be set before the CALL FAR to the
rom segment.

STACK_FRAME STRUC

BASE ADDR ESS DD ;base address pointer

RTN_FLAG bW ;flag return pointer

STRING_DATA DW svariable pointer

CMD_DESCRPT DW ;command variable pointer
STACK_FRAME ENDS

The resident DOS interpreter assumes a Segment and offset for
each variable passed in the CALL statement.

page 8



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

3.2 ENTRANCE REQUIREMENTS FOR ROMSEG:0006H HIGH LEVEL LANGUAGES

_ This entrance is used with the DOS resident driver expansion

and must be installed to function. If the DOS expansion is not
installed an error message will be displayed on the screen and
the system will halt.

This entrance assumes the pointers on the stack are four
hyte type SEGMENT:0FFSET pointers. If strings are used the
variable pointers point to the first character in the string. AlL
strings are enclosed in quotation marks, ("thid is a string").
Fortran uses apostrophe marks ('...') to define a string,
therefore to define a string the user would enclose the quotation
marks in apostrophe marks, ("this is a string"'). This al lows
variable string lLengths of up to 64k bytes in size. The DMA
vectors allow string transfer sizes up to 64k bytes also. Since
Fortran only allows 127 byte string Length, the user may use an
integer array and convert it at a Later date, this technique is
allowed by the interpreter. ALL output commands using string
variables must use the enclosed quotation technique else an error
message will be generated. No string descripter 1is used for
this entrance. This entrance is considered a LARGE model Llibrary
and has the file name IE488LRG.LIB. This is the link the FORTRAN
compiler uses to connect to FORTRAN (MicroSoft ver 3.2). The
Large C compiler ver 3.0 may be configured to handle this type of
string and stack format easily.

THE INTERPRETER IS EXPECTING THE STACK TO BE SET AS FOLLOWS WITH
NO DEVIATIONS.

GPIB_FRAME STRUC
BASE_ADDR ESS DD ;base address pointer
RTN_FLAG pD ;flag return pointer
STRING_DATA DD ;variable pointer
CMD DESCRPT DD ;command variable pointer
GPIB_FRAME ENDS

ALl string variables are handled in the same manor. The VARIABLE
string pointer will point to the first character of the string,
and the string will be enclosed in quotes ("..."). The maximum
length for output is 127 bytes maximum.

This method was designed to accommodate the different compilers

which do not pass string descripter pointers to assembly language
subroutines such as the Fortran Compiler.

page 9



5.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

3.3 ENTRANCE REQUIREMENTS FOR ROMSEG:000AH HIGH LEVEL LANGUAGES

_This entry point is similar to the previous ROMSEG:0006H
except the variable pointers on the stack are two byte offsets
which pointto the variables passed in the call statement. The
segment is assumed to be the DS segment register. This is
considered a small model (inker which allows only one data
segment and one code segment. ALL string variables are handled in
the same manner as the LARGE model entry point.

THE INTERPRETER IS EXPECTING THE STACK TO BE SET AS FOLLOWS WITH
NG DEVIATIONS.

GPIB_FRAME STRUC
BASE_ADDRESS DD ;base address pointer
RTN_FLAG DY ;flag return pointer
STRING_DATA DU ;variable pointer
CMD_DESCRPT [1}'] ;command variable pointer
GPIB_FRAME ENDS

ALL string varjables are handled in the same manner. The VARIABLE
string pointer will point to the first character of the string,
and the string will be enclosed in quotes ("..."). The maximum
length for output is 127 bytes maximum.

The DOS resident driver expansion must be installed for this Llink

to function properly. An error message will be displayed and the
system will halt if entry is attempted with no D0OS driver.

page 10



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

3.4 ENTRANCE REQUIREMENTS FOR ROMSEG:0D74H HIGH LEVEL LANGUAGES

This entry point requires some advanced programming
experience to use. It is the command Lline interpreter parse
section. The ROM interpreter consists of three partitions, the
Command Line Interpreter, The Command Line device builder, and
the command execution module. These three modules are very
independent functioning modules which share a common variable
array of RAM memory starting at offset 3000h and ending at 37FFh.
The RAM stores the initial command string transmitted by the
compiler and the four byte wvariable pointers to the data
VARIABLE and the four byte pointer to the return FLAG variable.
The board BASE ADDRESS is decoded and stored as a word in the RAM
buffer. If the above lLinks are not suitable for the current
compiler being used, users may write their own, The user s
required to complete three section of code:-

1. store the command string in the interpreter's
command string buffer and add the "*" character at
the end of the string.

2. set the data VARIABLE's segment and offset pointers
in the RAM buffer.

3. set a group of interpreter flags to identify the
return type from the interpreter and insure the
return address (segment:offset) is on the stack.

Once the above has been completed the user may enter the
interpreter and execute the specified command. A List of the
pointer offsets of the RAM are specified for custom applications.

IE488 INTERPRETER RAM BUFFER POINTERS

VARIABLE OFFSET DESCRIPTION

NAME HEX

RAMPTR 3000 ;First buffer lLocation
BASADR 300c¢ ;base address or bhoard #

CMPLR 300A ;compiler type flag

FLGSEG 300E ;FLAG variable segment pointer
FLGOFF 3010 ;FLAG variable offset pointer
VAROFF 3012 ;jdata VARIABLE offset pointer
VARSEG 3014 ;data VARIABLE segment pointer
TPASC 30A2 ;type of PASCAL compiler
1IEEBSY 30AE ;interpreter busy flag

CMDSTR 3008 ;interpreter command string pointer
ROMENTRY DD  OXXXXQ074H sentry point for ROM

;xxxx = THE SELECTED ROM SEGMENT

The following example uses this technique to intercept the ROM
interpreter and initialize the ROM interpreter for string
varjables where the first character in the string is the byte
count. This is typical of programs LlLike PASCAL and TURBO

page 11



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

PASCAL(1). Due to the unjgque external call procedure that Turbo
. Pascal uses this would be a good example of the advanced Level
interface. '

There are two constraints the external procedure in Turbo Pascal
has to over come. The first is the relative position of the IP
register for the procedure which Leads to the second. ALL
references to variables in the external procedure must be with
the DS register or the Stack. This is due to the SEGMENT
technique used by the 8086/88/286 type processor series. The
problem is to get the IP register contents at the entry point of
"the external procedure. Since the IP register cannot be pushed on
the stack and any near call is absolute IP this can create a
problem. The GPIBDVR.COM resident DOS driver has a program to
return the CS:IP registers to the user upon request. This is
accomplished by loading the AX register with 81F1 hex and issuing
an interrupt tc where the GPIBDVR driver was loaded. In this
example it was assumed Loaded at OFT hex. This interrupt function
will return the CS:IP register in DX:DI of the next instruction
to be executed. This utility may be used by any program to
obtain the C(S:IP registers. AlLlL variables internal to the
procedure will be referenced as [DIJ+variable.

page 12



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

PAGE 58,132

TITLE % IEEE-%88 TURBO PASCAL MODEL LIBRARY (STRNG LENGTH) * %
SUBTTL - = —===-==-- GENERAL DESCRIPTION ----—--=====-

COMMBNT \

This driver library is designed for any compiler which
uses a FOUR byte pointer on the stack. The Library will use
string descripter to get the byte count and point to the first
character of the string. The variable pointer will point to the
string descripter. The first byte of the string descripter will
contain the string byte count and bytes 2 and 3 will point to
the first character of the string to be processed.

The Library Llinks to the ROM's via a FAR JUMP to ROMSEG:0002
hex. The ROM segment may be changed by the user, however it is
set at 0C000:0000 hex by default. The program CHGVEC.EXE will
allow the user to change the segment if required.

The Llibrary Link sets up the stack to Look Like a basic
interpreter and runs accordingly. This means making one pass
through the command string to see if the variable is a string,
and if yes then set up a string descripter.

CALL SEQUENCE:

type
CMD
DAX
FLG
BAD

string [1271;
string [50];
Integer;
Integer;

var
C:COMMAND = 'OUTPUT 12[%]!
F:FLG 0
B:BAD 0
ViVAX '

oy n

begin
IE488(var C:CMD,var V:VAX,var F:FLG,var B:BAD);external IE488.COM
end

If the DOS resident driver is not installed then an error
message will be displayed and the program will halt.
The compilers this model Wwill work with are:

TURB(O PASCAL Ver 2.0 and higher

page 13



3.0 ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

PAGE
SUBTTL * LINK SEGMENT INITIALIZATION FOR SMALL MODEL =
SUBTTL

jrmmmeee————— STACK VARIABLE DATA STRUCTURE =---==-=-=w-=m-

FRAME STRUC

SAVEBP DW ? }BP register
RETURN_ADDRESS DW ? ;return address pointer
BRDADDR DD ? ;board address pointer
FLAG bD ? ;flag variable pointer
VARIABLE DD ? ;data variable pointer
COMMAND Db ?2 ;command string pointer

FRAME ENDS

R e LT SEGMENT IDENTIFIERS m-—=rm-rececmemcmccon.

DATA SEGMENT PUBLIC 'DATA'
DATA ENDS

IE4B88TUR SEGMENT BYTE ‘*CODE’
DGROUP GROUP DATA
ASSUME CS:IE488TUR, DS:DGROUP, ES:DGROUP, S$S:DGROUP

B o e S AL G S ST S SR G D S G G D S S G S G A S e e G D e P G G S G S S S0 M S e G G G G S S S S W B R G G W o -

SUBTTL **%* MAIN TURBO PASCAL LINK CODE #*x%x
SUBTTL

IEL88 PROC NEAR

MOV AX,81F1H ;get IP in DI

INT OF1H joget this IP group

JMP CONECT sexecute group

g VARIABLE DATA POINTERS AND IDENTIFIERS ==—=-w=-ec=—w—=-
RAMPTR EQU 3000H sInterpreter ram pointer
TPASC EQU 30A2H ;pascal compiler code pointer
CMPLR EQU 300AH sreset compilter flag

IEEBSY EQU 30AEH ;ROM busy flag

CMDSTR EQU 30Dp8H ;command string pointer
ERFLG EQU 30104 ;error flag offset pointer
ERSEG EQU 300EH ;serror flag segment pointer
VAROFF EQU 3012H ;variable offset pointer
VARSEG EQU 3014H ;data segment pointer

page 14



3.0

BASADR

PTRCOD

ROMOFF
ROMSEG

VARPTR

STGBUF

TPSTRG

CONECT:

EQU

DB
DW
DB

bW

PUSH
MOV
PUSH
suB
PUSH
MOV
MOV
Mov
cmp

300CH

INTERPRETER SEGMENT:O0FFSET

ENTRANCE REQUIREMENTS FOR ALL HIGH LEVEL LANGUAGES

;base address of board

"ROMSEGS' srom segment ID

007 4H ;jrom segment pointer
0COO0O0H

00H ;jvariable string count
STGBUF ;variable pointer offset
100H DUPC(D) ;string buffer for pascal
0000H ;pascal string flag

BP ;save BP register
BP,SP ;point to the variables
DS

DI, 0005H ;adjustment for 1IP
DI ;save for Llater
BX,CS:ROMSEGLDI] ;get pointer

ES,BX ;point to ROM's
PI,IEEBSY ;busy flag

ES:WORD PTRCDPI1,0000H ;are we busy ?
GPIBOK ;att ok

GPIBOK:

REP

LPX:

JE
LES
MOV
MOV
POP
POP
POP
RET

LDS
suB
MOV
PUSH
INC
MOV
MOV
MOV
MOV
INC
CLD

MOVS
MOV
POP
LES

CHP
JE
INC

BX,CBPI+FLAG
AX,0060H

ES:WORD PTRLBX1,AX
DI

b§

BP

16

SI,C[BPI+COMMAND
CX,CX

CL,DS:BYTE PTRLBX]
cX

SI
BX,CS:ROMSEGLDI]
ES,BX
DI,CMDSTRLDI]
ES:BYTE PTRLDII,CL
DI

BYTE PTR ES:[DIJ,DS:[SI]
DS:BYTE PTRLDI],'*!

X

BX,[BPI1+COMMAND

ES:BYTE PTRLBX1,'S$'
EXTSTR
BX

;set flag to busy code
sbusy code
;set flag

;srestore ds
srestore bp
sreturn to caller

;point to command string

;string count

jsave it

spoint to first byte
sS€et seg

sget es:di rom segment
;scommand string pointer
;put in byte count
;point to first byte
sset count direction

;move command string
sterm. of command string
srestore byte count
spoint to command string

;the variable a string ?

;exit if match
;bump pointer +1

page 15



3.0

LOOP

POP

PUSH

JMP
EXTSTR: LES
MOV
MoV
MOV
MOV
MoV
MOV
INC
INC
Mov
AND
MoV
MOV
STGLP: MOV
mov
INC
INC
DEC
JNZ
JMP
VARINT: LES
Mov
MoV
MoV
MOV
MOV
SETFLG: LES
MOV
MOV
MOV
MOV
Mov
LES
MoV
MoV
MOV
MOV
MoV
MOV
MoV

ENTRANCE REQUIREMENTS FOR ALL HIGH

LPX

S1

SI _
SHORT VARINT

BX,[BPI+VARIABLE

AX ,ES

DI,VARSEG

DS:LCDIT,AX

DI,OFFSET CS:VARPTRLSI]
AL,ES:BYTE PTRLBXI
CS:BYTE PTRLDPII,AL

DI

BX

CL,AL

CX,00FFH

DI,OFFSET CS:zSTGBUFLSI]

CS:WORD PTR TPSTRGLSIJ,01

AL,ES:BYTE PTRIBXI]
CS:BYTE PTR [DI],AL
BX

DI

CX

STGLP

SHORT SETFLG

BX,[BPI+VARIABLE
AX,ES

DI,VARSEG
DS:CDIT,AX
DI,VAROFF
DS:[DIJ,BX

BX,CBPI+FLAG

AX,ES

DI,ERFLG

DS:WORD PTREDII,BX
DI, ERSEG

DS:WORD PTRLDIJ,AX
BX,[BPI1+BRDADDR
AX,ES:[BX]

DI,BASADR

DS:WORD PTRLDIIJ,AX
DI,CMPLR

DS:WORD PTRLDIJ,0000H
DI,TPASC

DS:WORD PTRLDIJ,0000H

LEVEL LANGUAGES

;more to come
srestore IP

;save it for later
;integer variable ok

;get data pointer
jcan't move direct
;point to data seg ROM
;save data segment ptr
;getstring descript ptr
;get byte count

;set string byte count
;point first character
;point first character
;get byte count

3<255 BYTES

;initialize buffers
;inmit. strg flyg

;get byte
;put in buffer

;bump pointers
;byte count -1
;smore to come
:set flag pointers

;joet data pointer
;can't move direct
;point data seg in ROM
;save data seg ptr
;pointer offset

;point to data

;get flag pointer
;not allowed direct
;offset

;point to data
:segment pointer
;segment set

;get board address
Jget address

JRAM ptr to BASE ADDRESS
;set base address
;jreset flags
;compiler flag clear
;pascal flag

:flag clear

ssetup dummy stack for ROM interpreter return procedure

PUSH
PUSH
PUSH
PUSH

DX
DX
DX
DX

;variable
;jvariable
;variable
;variable

N =

_page 16



3.0

RXTN:

RTHNLP:

TBRTN:

TBRTN:

IE488
IE488TUR

PUSH
Mov

PUSH
PUSH
PUSH
PUSH
PUSH
JMP

POP
CMP
JE

LES
MOV
MOV
MOV
INC

MOV
Mov
INC
INC
DEC
JNZ

POP
POP
RET

POP
POP

RET

ENTRANCE REQUIREMENTS FOR ALL HIGH

cs

BX,O0FFSET RXTNLSI]
BX -

Bp

ES

§S

DS

DWORD PTR ROMOFFLSI]

SI
CS:TPSTRGCSII,00

TBRTN

BX,[BP]+VARIABLE
DI,OFFSET CS:VARPTRLSI]
CL,CS:BYTE PTRLDI]
DI,OFFSET CS:STGBUFLSI]
BX

AL,CS:BYTE PTRELDII]
ES:BYTE PTREBXI],AL
BX

DI

CX

RTNLP

DS
BP
16

DS
BP
16

ENDP
ENDS
END

LEVEL LANGUAGES

sreturn pointer

3CS8:IP return on stack
;simulates ROM stack
;pointers

;execute

;restore IP offset
;is it a string =1
;return to user
sget variable

;get pointer

;byte count

;buffer

;initialize pointer

;get byte
;put it in PASCAL BUFFER

;bump pointers
;more to come ?
syes

;return to caller

sreturn to caller

:pop variables
srestore BP
;return to caller

page 17



4.0 LIBRARY OVERVIEW

The disk is shipped with several files on it. The main file
GPIBDVR.COM is the DOS resident driver. The file CHGVEC.EXE is
for changing the vector to call the Library. The remaining files
have the extension .L.IB which are the individual library files
for the specified compiler. ALL the .LIB files begin with
IE488xxx.LIB where xxx is the three Letter code for the
particular compiler.

LIBRARY FILE NAME: IE488xxx.LIB

where: xxx is the Library identifier

FOR =- FORTRAN MicroSoft version 3.2
TBP -- TURBO PASCAL version 2.0/3.0 (IE4B88TUR.COM)
SML -~ SMALL MODEL COMPILER ENTRANCE
LRG =- LARGE MODEL COMPILER ENTRANCE
BAS -- BASICA COMPILER MicroSoft version 71.xx/2.xx

The commands included in the Llibrary are shown in the table
below and are explained in the following sections.

ABORT

CLEAR dev1, dev2, .... devN

CONFIG TALK=dev1/MTA, LISTEN=dev2, dev3,...,{(MLA)
ENTER dev.secad [imagel

EQI devlimagel]

LOCAL dev1, dev2, ... devN

LOCKOUT dev1, devZ, ... devN

OUTPUT dev1l, devZ2, ... devN [imagel
PARPOL

PASCTL dev

PPCONF dev

PPUNCF dev

REMOTE devl, devZ2, .... devN
REQUEST (1)

RXCTL

STATUS dev.secad

SYSCON MAD=dev,CIC=0/1/2/3,N0B=1/2,BA0=&Hddd, BA1=8&Hddd

TIMEQUT
ITEST (var, HNUM)

PRINT/h (var, Nob)

page 18



4.0 LIBRARY OVERVIEW

AllL modes of operation are determined by an ASCII STRING

in a command (COMMAND or CMD) referenced within & CALL statement.

The variable is declared a CHARACTER COMMAND*127 at the beginning
of the program. ALL non character variables are INTEGER*Z type
and must be declared as such. The CALL statement format is:

CALL IE488 ( COMMAND, var, FLAG, BASADR )

or if used as a FUNCTION:
if IE488 ( COMMAND, var, FLAG, BASADR ) then goto ERRORS
where:

COMMAND -~ is the COMMAND dncluding device addresses or
secondary commands and [ 1image terminators J. This
is always a STRING and is decoded by the Command Line
Interpreter in the IE-488 Llibrary. The COMMAND is
separated from the operands (devices etc.) by one or
more SPACES, any other delimiters will cause a SYNTAX
error in command line. The separator for devices is
alwaysthe comma "," and secondary address is always
a period "." . The IMAGE string isidentified by
brackets "[]". The Command Line Interpreter 1is
relatively tolerant of syntax error identification
and will send back the appropriate error code to
isolate the error. The format dis:-

CMD = '""COMMAND devi, dev2, ....,devn [imagel™’

The [image] specifier allows the user to specify the
variable field operations for the beginning and end
of the data transfer variable. The variable may be a
variable name, array identifier, numeric data value
or a string. The user must match the image to the
data type or an error will be generated in the data
transfer. No check is made in the match of the image
to the variable type, this is the responsibility of
the user. The [imagel codings are explained 1in

section 3.1 (IMAGE SPECIFIERS).

var —----- isthe data variable OUTPUT/INPUT to be transferred
from/to. batais transferred as specified by the
image terminator/specifier. If the image specifier
1snot used the data is treated as anINTEGER*2. The
data may be of String or Integer type.

FLAG ---- is the transfer status of the CALL statement. If an
error occurs FLAG will contain a HEX number
representing the error condition., A set of error and
transfer message codes are generated at the
completion of each CALL. Type is INTEGER*Z2 only.

BASADR -- is the address of the interface board being used.
BASADRY may be 0 or 1, or actual base address e.g. 768.

The type is INTEGER#*2 only.

o
+7]
w
4]
-—
N2



4.0 LIBRARY OVERVIEW

4.1 IMAGE SPECIFIER

The main reason for the IMAGE specifier is to allow the ROM
interpreter to identify the DATA type of VARIABLE in the CALL
statement. It is the users responsibility to insure that strings
and integer data types are declared in the image specifier. The
IMAGE specifier will also condition the data with odd/even or no
parity if the variable is a string, or allow transfer to the high
or Low byte of an integer variable, or sequential bytes if the
variable is a 16 bit word. Also the user may transfer a portion
of the variable by selecting the starting and ending Limits. The
Interpreter will check the starting and ending Llimits of all
VARIABLE strings and return the appropriate error code if the
Limits are exceeded. The Interpreter will use the IMAGE specifier
to identify the VARIABLE data type and transfer the data. It is
the programmers responsibility to insure the data types match the
IMAGE specifier. The IMAGE specifier also determines the data
transfer type either program control or DMA transfer. The
following are the codes for the IMAGE specifier.

CLE(p)(x),m,z] - Input/Qutput the number of Bytes to/from the
variable string starting at position m and
ending at position 2z, with parity p (E=even,
0=0dd, none). If m, z and p are omitted the
entire string will be output as in the string
variable$ as specified by the image terminator
(x) without parity. If no terminator is used
then the string will end with EQI.

[(BCH/LY(x),m,2z]~ Input/Output the specified H/L number of Bytes
to or from the the specified integer variable
array starting at (m) array location and ending
at the (z) position. The data transferred will
not change the the other half of the 16 bit
integer, only the byte specified is changed on
an ENTER command. There is no change to the data
with the OUTPUT command. [BL#,2,10]1 will
transfer the Low byte of position 2 thru
position 10 of the integer variable array. Note,
the number of bytes transferred is nine,
position two and ten are included. Transfer
termination is specified by the iJmage
terminator. It is the user's responsibility to
insure that the array size and the type of array
are correct. No check is made on data types. The
values of m and z may be reversed which will
transfer data in the reverse order. If m and z
arethe same then only one word is transferred.
If m and z are omitted then the integer variable
is not considered an array and the variable is
transferred with or without an EOI depending on
the image terminator (x).

page 20



4.0 LIBRARY OVERVIEW

CW{x),m,z]

Input / Qutput the specified number of 16 bit
words to / from the specified integer variable
(array) starting with position (m) and ending
with position (z). The number of words
transferred is defined as {z - m + 1}.
Termination is specified by the image
terminator. It is the user's responsibility to
insure that the array size and type of array are
correct. No check is made on data types. The
values of m and z may be reversed which will
transfer data in the reverse order. If m and z
are the same then only one word istransferred.
Ifm and z are omitted then the integer variable
is not considered an array and the variable is
transferredwith or without an EOI depending on
the image terminator (xJ.

page 21



4.0 LIBRARY OVERVIEW

4.2

Z(t)

#(t)

+(t)

(t)

IMAGE TERMINATORS

The b4 image terminator cancels both the
carriage return, Line feed and EOI terminators
during an OUTPUT command execution. During an
INPUT command the entry will terminate when the
array size or the input count is reached (m +
count = z) or EOQI.

The # image terminator ends the data output with
an EOI only. No carriage return or Line feed is
inserted at the end of the data output transfer.
The data is terminated by an EOI during the INPUT
or OUTPUT command. The ENTER also terminates if
the Llast item in data List is entered which sets
the FLAGYX variable with an error code of &HO00Z20.

The + image terminator adds a carriage return,
Line feed and EOI during an OUTPUT command only,
The INPUT command is in the default mode (INPUT
terminates with EOI or Last entry). If carriage
return and Line feed are part of the data being
transferred they will be sent as normal data.

No image terminator code defaults to an EOI only
at the last byte to be transferred. The operation
is the same as the # terminator.

The transfer terminator t determines the type
of transfer the GPIB is to perform. The fol lowing
transfer codes are available. If this specifier
is not used the data transfer is under program
control.

D = Direct Memory Access (DMA) to the specified
array. The m and z specifiers must be used
with this type of transfer. Structure
programming must be used when this mode 1is
active. ALL variables must be assigned before
the CALL is executed and no new variables are
allowed to be introduced after the execution
of the CALL statement. See APPENDIX A for
details on DMA transfers.

page 22



4.0 LIBRARY OVERVIEW

4.3 FLAG RETURN CODES

The following codes are returned in the FLAG% variable
upon completion of the CALL statement. The flag return codes are
grouped into 3 categories.

kkhkkkhkhkhhkhhkkhhkritk DATA TRANSFER *hkkakkhhkhkhkhkhhkdihhkhk

DECIMAL HEX DESCRIPTION

00000 #0000 = TRANSFERRED 0K

00032 #0020 = NO INPUT EOI or LINE FEED
00048 #0030 = DEVICE TIME O0UT

00064 -#0040 = RESERVED

00080 #0050 = DMA CHANNEL BUSY

00096 #0060 = GPIB BUSY

khkkhkhkkhkkhkhkkhrrthkhax HARDWARE *hkkkkkhkhkhhtkhhhtkhk

DECIMAL HEX DESCRIPTION

00256 #0100 = HARDWARE FAILURE

00512 #0200 = TIME OUT ON DATA TRANSFER
00768 #0300 = DEVICE NOT ACTIVE CONTROLLER
01024 #0400 = IBM-PC ACTIVE CONTROLLER
01280 #0500 = SYSTEM NOT INITIALIZED

01536 #0600 = CONFIGURATION ERROR

kkkkkhkhkkhkkkthkkhkhhkikk FORMAT kkkdkhkkkkkhkkkkhhkhhkhkkkkk

DECIMAL HEX DESCRIPTION

04096 #1000 = UNDEFINED COMMAND

04352 #1100 = SYNTAX ERROR IN COMMAND LINE
08192 #2000 = UNDEFINED IMAGE

12288 #3000 = DEVICE RANGE ERROR

12544 #3100 = TOO MANY DEVICES

12880 #3200 = TALKER/LISTENER CONFLICT
16384 #4000 = COMMAND/DATA OUT OF RANGE
20480 #5000 = COMMAND REQUIRES DEVICE
24576 #6000 = UNDEFINED DEVICE CODE

28672 #7000 = INPUT ARRAY NOT INITIALIZED
-28672 #9000 = IBM MUST BE TALKER or LISTENER

page 23



4.0 LIBRARY OVERVIEW

4.4 USER COMMANDS

The following set of commands explain the use of the FORTRAN
driver only in the applications. The use of other compilers will
only change the CALL sequence to a specified PROCEDURE and
type/var pseudo operators to call the device.

The following user commands are available. The string
variable COMMAND is the same string format as described in the
Fortran manual. ALL command strings must end enclosed in quotes
("....") typical command string would be as fol Lows. Please note
that all commands must be assigned in string form before using
the CALL statement. The single quotes define a string in Fortran
while the double quotes mark the begining and end of the string
for the resident interpreter. Since Fortran does not pass the
byte count of the string to the subroutine this method was
incorporated.

COMMAND= '"QUTPUT 03.13.20,05LCWD#,2,20]""

This command string would output integer words (16 bit) two thru
and including word 20 to device primary address 03 with secondary
addresses 13 and 20 and also to device primary address 05. The
data transfer uses the DMA mode for fast access. The device
codes must be in decimal within the range of 00 to 30. This
allows the user a maximum of 31 device addresses to choose from.
However the maximum number of devices which may physically be
connected to the bus is 15.

The transfer of String data is Limited to single element arrays

and must be initialized. The Maximum string size is 127 bytes as
defined inthis Users manual.

page 24



4.0 LIBRARY OVERVIEW

x
C kg

ABORT - Terminate the current command issued by the IBM. The
command executes an IFC and resets the IBM board
addressed. DMA and Interrupts are disabled. The
IBM-PC is assumed to be the main system controller
and unconditionally takes control of the bus and
remains the controller in charge until PASCTL
command is executed.No device is necessary.
COMMANDS FORMAT:

"ABORT"

EXAMPLE:

CALL IE488 (*"ABORT"', VAR, FLG, BRD) '‘execute command
IF(FLG .EG@. 0) GOTO 100 'test for errors ?
WRITE(+,(\( "ERROR IN ABORT'))) FLG

STOP

END

100 ...... user program CONtiNUES eaecasveseas

CLEAR

EXAMPLE:

CALL

CONFIG

Clear or Reset the selected devices or all devices. If
no device is given the GPIB is cleared. The IBM PC
must be the active controller or an error message wWwill
be generated.

COMMANDS FORMAT:

"CLEAR dev1,dev?,......devN"

IE488 (""CLEAR 10,12,14.22""', VAR, FLG, BRD)

Configure the GPIB to the devices specified in the

command string. The GPIB will remain in this state
until reconfigured by issuing an ENTER or OUTPUT
command. The VAR variable is not changed 1in this
command. If the TALK = dev1 is omitted the IBM-PC is
assumed to be the controller only. The user may enter
MTA to make the IBM=PC the talker or enter the actual
device number using the TALK variable name. The IBM-PC
may be addressed as a Listener by using the name MLA
as the last device in the COMMAND string. The FLAG
variable will contain the error code if any conflicts
occur.

COMMAND FORMAT:

“CONFIG (TALK=dev1 /MTA,)LISTEN=dev2,dev3,..,(MLA)"

page 25



4.0 LIBRARY OVERVIEWMW

ENTER

EOI

CALL

EXAMPLE:

200

VAR

-
=1

Input GPIB data from selected talker to specified
string array. The string array must have been
previously dimensioned. The FLAG will contain error
codes if an error occurs. The IBM - PC must have
been previously programmed as a Listener.If the IBM -
PC is not the controller then the ENTER command will
return error code 9000H to inform the caller that the
IBM is not in the listen mode. The command may be
re-entered until the controller in charge programs
the IBM to Llisten. Only one device is al lowed with
this command.

COMMAND FORMAT:
"ENTER dev.secad [imagel"

IE488 ('"ENTER 12.05C$1""', DVM, FLG, BRD)

Sends a data byte on the selected device with EOI
asserted. The bus must have been programmed to talk
before the command is executed. The variable contains
the data to be transferred. It is the users
responsibility to insure the data and type match. If a
string variable is used the entire string is
transferred ending with an EO0I. If Integer mode is
used only one transfer (byte) or two (word) will be
executed. The Limit parameters are ignored. Only one
device is al lowed. No device is generally required if
the Talker (IBM-PC) has been previously programmed to
talk by the controller in charge. If the IBM-PC is not
the controller in charge and not programmed as a
talker then an error code &h9000 will be returned
until the controller in charge programs the IBM-PC as
a talker before data is transferred.

COMMAND FORMAT:

"EQI dev [imagel"

'"THIS IS A ""STRING"" WITH QUOTES"!'

'define Last byte to transfer

CMD

-

YMEQI 12[C$1"? 'define command

CALL IE488 (CMD, VAR, FLG, BRD)
IF (FLG .E@. 0) GOTO 200
WRITE (*(a\('ERROR IN LINE 720'))) FLG

STOP
END

manacsenes CONtinue users program wceeescecese

page 26



4.0 LIBRARY OVERVIEW

» L

This routine will transfer the STRING in the VAR variable and
issue an EQI command with the Last byte of the STRING to signal
the receiver on the bus that the data transfer wiLL_end.

The image specifiers for the removal of the Lline feeds and

carriage returns are ignored during the command, no parity is
used.

LOCAL - Set selected device(s) to the local state. If no device
is specified then all devices on the bus are set to
local. The IBM~-PC must be the active controller or an
error message Wwill be generated.

COMMAND FORMAT:

EXAMPLE:
CMD = *"LOCAL 10,11,12,14"" ‘define command
120 CALL IE488 (CMD, VAR, FLG, BRD) Texecute command
IF (FLG .EQ. 0 ) GOTO 200 ‘test for errors
WRITE (*,\('ERROR IN LINE 120'))) FLG
STOP
END

XX200 +ecaase CONtinue users program ceessess

The above program sets devices 10,711,12,14 to the Llocal state and
returns to the wuser's program. The LOCKOUT command is wvery
similar in structure to the LOCAL command except the LOCKOUY does
not allow the user to manually select the device to local.

LOCKOUT - Local Lockout the specified device. If no device is
given all devices on the bus will be set to Llocal
Lockout. The IBM-PC must be the active controller or
an error message will be generated. The devices cannot
be set to Local except by the GPIB controller. The
FLG% variable contain the error code.

COMMAND FORMAT:
"LOCKOUT devt,dev2,.....devN"

This command is the same as the LOCAL command except the user is
NOT al Lowed to manually select the device to local.

page 27



4.0 LIBRARY OVERVIEW

OQOUTPUT - Output selected string to selected Listener(s) on
GPIB. The variable will contain the .data to be
transferred. The image specifier will contain the data
type and terminators. The FLAG will contain the error
codes if an error occurs. Up to 14 devices may be
accessed in the List. If the IBM-PC is not the
controller in charge, the IBM-PC must be programmed by
the controller in charge hefore data is transferred,

COMMAND FORMAT:

"OUTPUT devil.secad,devZ2...Limagel”

EXAMPLE:
VAR = ""THIS IS A TEST"® 'define bytes to transfer
¢CMD = '"OQUTPUT 12,11C$EI"" ‘define command

120 CALL IE488 (CMD, VAR, FLG, BRD?
IF (FLG .E@. 0 ) 60TO 200
WRITE (*(\('ERROR IN LINE 120'))) FLG
STOP
END

'This command Line will output the entire string "THIS IS A TEST"
'with out the quotes using even parity and ending with a EOI code
'to show the end of 'the string. The FLG variable will have any
‘error transfer codes 'if an error was detected during transfer.
'ALL string transfers must be enclosed in ,quotes.

200 .saunseses CONtinue uUSErs pProgram sesasssasss

DIM MYDATA (2,400) 'my integer data array
CMD = "MOUTPUT 12,11CBL,0,1002"" "setup image

¢ output data in 2,0 from element 0 to 100 lLow byte only
420 CALL IE488 (CMD, MYDATA(2,0), FLG, BRD)
IF(FLG .EQ. 0) GOTO 500
WRITE (*(\('ERROR IN LINE 420"))) FLG
STOP
END
sessasCONtinue uUsers pPrograM.ecceess
500 *setup for DMA transfer
CMD = '"QUTPUT 12,10,15LWD,0,81921"* 'DECIMAL ONLY

' transfer data in DMA mode

550 CALL IE488 (CMD, MYDATA(2,0), FLG, BRD )
IF (FLG .EQ. O ) GOTO 600
WRITE (*(\{('ERRQR IN LINE 550'))) FLG
STOP
END
'If error code in DMA is not &H50 or 0 then issue an ABORT
command to clear interface device.

600 asenssas USEr program continues .....e.

page 28



4.0 LIBRARY OVERVIEW

PARPOL

Reads the 8 Status Bit messages for the devices on the
GPIB which have been set for parallel poll
configuration. The VAR will contain the 8 bit message.
The IBM~PC must be the active controller or an error
will occur.

COMMAND FORMAT:

"PARPOL"

PROGRAMMING EXAMPLE:

VAR
CMD

0 "Parallel Poll return byte initialized

"“PARPOL""

120 CALL IE488 (CMD, VAR, FLG, BRD)
IF (FLG .EQ. 0 ) 6070 200

'if error, the flag is printed out.

WRITE (*(\('"ERROR IN LINE 120'))) FLG

STOP

END

200 'process parallel poll return byte code in character VAR

This command responds as programmed in the parallel configuration
The VAR will contain the eight bit poll response. See
the Parallel Poll Configure command (PPCONF) for the details of
the bit pattern.

command.

page 29



4.0 LIBRARY OVERVIEW

PASCTL - The Active control of the GPIB is transferred to the
specified device address and the IBM-PC becomes the
standard Listener/talker but not control ler. The IBM -
PC must be the active controller or an error will
occur. The IBM-PC is not al lowed to Talk until
programmed by the controller in charge.

COMMAND FORMAT:

"PASCTL dev"

EXAMPLE:

CMD = '"PASCTL 6"°
110 CALL IEE488 (CMD, X, FLG, BRD)
IF (FL6 .EQ. 0> GOTO 200
WRITE (*(\('ERROR IN LINE 110'))) FLG
sTOP
END

200 ® ® 8 &0 & 8 0 S WA continue users program 4 ® & & & A0 4aa e Sssa s s
The IBM-PL 1is inactive at this point and no

controbller commands are al lowed. To receive control
back the command RXCTL must be used as fol lows.

CMD = MRXCTL"? ‘define command
VAR = 0 'set VAR$ to false
330 CALL IE4B88 {(CMD, VAR, FLG, BRD) 'test for control

IF (FLG .EQ. 0 ) GOTO 360

WRITE (x(\{'ERROR IN LINE 330'))) FLG
STOP

END

360 wuee. USEF CONtiNUES Program sessae
IF VAR = -1 THEN THE CONTROL IS BACK ELSE NOT IN CONTROL

Note:; It is the responsibility of the controller in charge to
program the IBM-PC to the talk mode before the transfer of
control is executed.

page 30



4.0 LIBRARY OVERVIEW

PPCONF - Sets up the desired parallel poll bus <c¢onfiguration

for the user., The VAR integer contains the poll
sequence (00-FF). IBM-PL must be the active controller
or an error will occur.
COMMAND"FORMAT:

: "PPCONF dev"

The PARALLEL POLL function provides a means of sending
one bit of status information if the controller is
requesting the response. Unltike SERIAL POLL, which is
initiated by the device, the parallel poll is
initiated by the controller in charge. There are two
methods to configure a device for parallel poll,
remote and Local configurations. In remote
configuration (PPI), he controller uses the following
bit codes to configure the device addressed.

Were Pn = the device bit code 0 to 7 for PPR1 to PPRS
and § is the Send of the Parallel Poll Response, S =
response. Adevice may be configured so that it never
responds to a parallel potl. PPD (&H70) is the
parallel poll disable command, which places the device
in the parallel poll idle state (PPIS). The value of
the individual status (IST) can be set by bit B4 in
the VAR byte,.

B4 = 0 IST = Parallel Poll Flag
B4 = 1 IST = SRAQS
EXAMPLE:
BRD = (0
A =19 "parallel configure bit code for dev 14

140

170

CMD = °*"PPCONF 14""

CALL IE488 (CMD, A, FLG, BRD)

IF (FLG .EQ. 0 ) GOTO 170

WRITE (#(\N("ERROR IN LINE 140'))) FLG
STOP

END

cesmea CONRtinue pProgram ceoceaeseee

In the Llocal configuration (PP2), the specifications
are made from the device. Writing 0 11 U 8 P3 P2 PT to
the VAR configures the controller for a Parallel Poll
Response. When U =0, this command is the LPE (local
poll enable) Local message. When U = 1, the TLC does
not respond to the poll. The TLC is configured in the
S bit. The PPRn will be sent true only if the Parallel
Poll Flag (IST individual status Llocal message)
matches this bit. During normal operation, The value
of VAR onentry will set or clear PPF (IST if B4 = 0)
according to the device's need for service.

page 31



4.0 LIBRARY OVERVIEW

PPUNCF - Resets the parallel poll: type configuration of the
selected device. The IBM-PC must be the active
controller or an error will occur. The specified

= device will not respond to a parallel poll command.

COMMAND FORMAT:

- "PPUNCF dev"

PROGRAMMING EXAMPLE:

BRD = 0
A = HOA
CMD = ""PPUNCF 14""
130 CALL IE488 ¢ CMD, A, FLG, BRD )
IF (FLG .EQ. 0 ) GOTO 300

' error is processed here
WRITE (*(\('ERROR IN LINE 130"'))) FLG
STOP
END

300 'program continues here 1f ok

This routine will only disable device 14 to respond to a Parallel
Poll command. If no device code is used the entire bus 1is

disabled.

page 32



4.0 LIBRARY OVERVIEW

REMOTE =~ Sets the selected devices or device on the GPIB to go
into the remote position. The IBM must be theactive
controller or an error will occur. If an erroroccurs
the FLAGY will contain the error code.

COMMAND FORMAT:

“"REMOTE devil,dev2,.cca...devN"”

EXAMPLE:
VAR =0 'dummy variable not used
BRD = 0 'define board number
CMD = "MREMOTE 10,12,14"" 'define command

140 CALL IE488 (CMD, VAR, FLG, BRD )
IF (FLG .EQ. 0 ) GOTO 200
WRITE (*(\('ERROR IN LINE 140'))) FLG
STOP |
END

200 .c..eeenn. CcONtinNUE USErS Program ceeceeseecess

This command is the counterpart to the LOCAL command. Devices
10,12,14 are set in the remote state and ready for a command
sequence, The error flag FLG%Z will contain any error codes if an
error was detected.

page 33



4.0 LIBRARY OVERVIEW

REQUEST - The GPIB may request service from the active
: controller on the bus by executing the "REQUEST n"
command. This command has two modes. the first when
"n"* jis omitted which may be executed any time to
monitor the status of the IBM interface board. The
VAR (INTEGER) contains the status bits for the GPIB
board addressed, [Hi Byte 1] = on board hardware
registers, CLo Bytel contains the IBM GPIB serjal poll
register status byte. The second mode when n is any
number (0-31). This al lows the user to set a serial. .
poll status word to the controller in charge. The Low
byte of the variable will contain the STATUS byte to

be transferred to the controller.

msb GPIB ON BOARD SERIAL POLL REGISTER tsb

BIT 08 = INTERRUPT ENABLED 1 = on BIT 00 = s0 BIT
BIT 09 = DMA ENABLED 1 = on BIT 01 = 81 BIT
BIT 10 = DMA CHANNEL BIT 02 = §2 BIT
1=chan #1, O=chan #3 BIT 03 = §3 BIT
BIT 11 = INTERRUPT vector Level (1) BIT 04 = S§4 BIT
BIT 12 = INTERRUPT vector Level (2) BIT 05 = S5 BIT
BIT 13 = INTERRUPT vector level (4) BIT 06 = rsv on send
BIT 14 = srgq (CIC=1) PEND bit (CIC=0) PEND on receive
BIT 15 = Controller In Charge (CIC) BIT 07 = $7 BIT
1 = yes, 0 = not in charge
EXAMPLE 1: ===m===- IBM NOT IN CONTROL ======—-
BRD =0
X = (SERIAL POLL BIT PATTERN)
CMD = °*"REQUEST 1"*¢

130 CALL IE488 (CMD, X, FLG, BRD)
IF (FLG .EQ. 0 ) GOTO 200
WRITE (*{(\N('ERROR IN LINE 130'))) FLG
STOP
END

seesrssss process status flag code .

200 WRITE (*x{(\('REQUEST 1 FLAG CODE =

page 34



4.0 LIBRARY OVERVIEW

EXAMPLE 2: ==----=- IBM IS CONTROLLER IN CHARGE ---==~---
BRD =0
CMD = *“REQUEST"?

130 CALL IE488 (CMD, X, FLG, BRD)
IF (FLG .EQ. 0 ) GOTO 300
WRITE (*(\('ERROR IN LINE 130'))) FLG
STOP
END
300 WRITE (*(\('REQUEST STATUS CODE = '))) X

Bit 09 would be used to determine if the DMA data transfer is
complete (0 = off, 1 = on). The user may use the instruction at
any time to monitor the state of the IBM-PC GPIB.

140 IF ITEST(X, #0200) THEN 130 ' this will Lloop until the DMA is

' done.

RXCTL =~ Receive control of the bus.The VAR (integer) is set
true if the IBM regains control of the bus else VAR
is false.

COMMAND FORMAT: .
"RXCTL"

EXAMPLE:

BRD = O 'define board number
CMD = WMRXCTL"® 'define command

150 CALL IE488 (CMD, VAR, FLG, BRD)
" IF (FLG .EQ. 0 ) GOTO 200

WRITE (*(\('ERROR IN LINE 150'))) FLG

STOP

END

200 «ea CONtinue users program until IBM is controller ...
IF (VAR .EQ. 0 ) G6O0TO 150
' the last instruction before control
300 eveas THIS IS WHERE THE PROGRAM WILL CONTINUE ...+
e es WHEN THE IBM RECEIVES CONTROL ceens
csssessa User program continues .s.e..o.

When control is received the IBM may issue all commands as
outlined. The RXCTL command may be issued at any time to
determine the state of the IEEE488 BUS.

page 35



4.0 LIBRARY

STATUS =

EXAMPLE:

' three com

BRD =
A = tn
CMD = °
DVMEOQI
PVMSTAT

160 CALL IE
IF (FLG
WRITE (
STOP
END

C

190 CALL IE
IF (FLG
WRITE ¢
STOP
END

C

C Status ¢

220 CALL IE
IF (FLG
WRITE ¢
STOP
END

C

250 WRITE ¢
STOP
END

OVERVIEW

A serial polled devices status byte is read into the
selectedvariable. The variable will contain the
Statusbyte of the device specified as a serial poll.
TheIBM~PC must be the active controller or an error
will occur. Only one device is allowed with one
secondary address. If no device is specified an error
will occur.

COMMAND FORMAT:

“"STATUS dev.secad"

mand sequence for Keithly Model 175 DVM
0

M33X"*

"REMOTE 12""

= YMEOI 12C$1""

Us = *"STATUS 12"*

488 (CMD, A, FLG, BRD )
.EQ. O ) 60T0 190
*(\("ERROR IN LINE 160'))) FLG

488 (DVMEOI, A, FLG, BRD )
.EQ. 0) GOTO 220
*(\('ERROR IN LINE 190))) FLG

ommand issued here

488 (DVMSTATUS, X, FLG, BRD )
.E&. 0) GOTO 250

*(\("ERROR IN LINE 220'))) FLG

*(\('STATUS BYTE CODE RETURNED IS = ")) X

The above routine selects the DVM, sends out Set status info

"M3ZX" then

the status (serial poll) is executed on the device.

page 36



4.0 LIBRARY OVERVIEW

SYSCON - SYStem CONfiguration and initialization of the GPIB.

The user must run this command once before using the
GPIB. IF this is not run first an error will be
generated. Base address data BAx 1is in HEX(&H) or
DECIMAL. The SYSCON command checks for the conflict of
all parameters if two boards are used. These are the
BASO, BAS1, interrupt vector and DMA channel settings
which must be different. The BRD% and data variable
are not used in this CALL since they have been defined
in the COMMAND string.

COMMAND FORMAT:

"SYSCON MAD=dev,CIC=(0/1/2/3),N0B=(1/2),BA0=&Hddd(,BA1=&Hddd)"

where:
dev = the address of the IBM 00 to 30 decimal
MAD = My (IBM) device address
NOB = number of IE488 boards (1 or 2)
BAO = base address for board 1
BA1 = base address for board 2

CIC = controller in charge, O=none, 1=brd#1, 2=brd#2,
3=(brd#1 and brd#2) (separate GPIB busses).

EXAMPLE:

130

CMD = *“SYSCON MAD=3, CIC=1, NOB=1, BAO=&H300""
CALL IE488 (CMD, A, FLG, BRD )

IF (FLG .EQ. 0) GOTO 200

WRITE (*(\('ERROR IN LINE 130'))) FLG

STOP

END

'The above lines of initialization code should always be placed
'at the beginning of your programs and precede any use of the IE-
"488.

200

resassaane CONtIiNUE USErS Program ..eecececessas .

page 37



4.0 LIBRARY OVERVIEWM

TIMEOUT - Sets the time out duration when transferring data
to/from the devices. The Variable integer VARX is set
to a number from 0000 to 65000. The approximate time
is the VARY * 1.5 seconds for the IBM-PC/AT and VARX *
3.5 for the IBM-PC/XT. No error flag is returned.

COMMAND$ FORMAT:
"TIMEOUT"

EXAMPLE:

1700 TIMESETS = "TIMEOUT" )

110 DURATIONZ = 10 ‘approximately 30 seconds for PC
120 CALL IE488% ( TIMESETS, DURATIONY%, FLAGY%, BASADRZ )

130 ' continue user program time out is set until changed.

TRIGGER - Sends a trigger message to the selected device or a
group of devices. The IBM-PC must be the active
controlier or an error will occur.

COMMANDS FORMAT:

"TRIGGER devl, devZ2,.cveaaeaa. devN"

EXAMPLE:
xx120 BRD% = 0 ‘define board number
xx140 CMD$ = “TRIGGER 11,12,15" ‘define command

%xx150 CALL IE488-(CMD$, VARXZ, FLGX, BRDZ%)
ee=aa devices 11,12,13 are triggered at the same time .....

xx160 IF NOT FLGXZ THEN 200
xx170 PRINT "ERROR ";HEX$(FLGXZ);" 1IN LINE 160" : END

XX200 .seeasessa CcONtinue users program cccaasascess

page 38



4.0 LIBRARY OVERVIEW

DATA SUPPORT FUNCTIONS

THESE FUNETIONS ARE ONLY AVAILABLE FOR THE FORTRAN LIBRARY

The following functions were added to the IE488FOR.LIB
Library file to allow the user to handle string functions and
string/integer Logical functions with out declaring the variable
as a LOGICAL, The addition of a PRINT(h) (VAR, NOB) function for
outputing integer arrays which are used as string arrays for GPIB
data transfer.

ITEST (var, num)

This function allows the user to TEST any bit(s) in the
specified "var" byte. The variables are all INTEGER*Z however the
function only works on the INTEGER and returns the integer to the
specified variable. The function performs a Logical AND on the
specifiedvariable integer without changing the contents of the
variable. The returned integer is the lLogical AND of the variable
integer. This allows the user to single out any bit in the
integer for a set/not set condition without the declaration of a
LOGICAL type command.

EXAMPLE:
¢ *kkk SETUP VARIABLES *xwwx

INTEGER*2 VAR1, LNUM, ITEST, RTNUM
c

VART = #13AB

LNUM = #0081

RTNUM =0
¢

RTNUM = ITEST ( VART1, LNUM )
C
¢ **%% FUNCTIONS RETURNS HEX 81 SINCE THESE BITS WERE SET
c AND THE VAR1 VALUE REMAINS UNCHANGED.
¢

IF ( ITEST( VAR1, #80 ) .NE. 0 ) GOTO 100
c
c «o« WILL EXECUTE THIS LINE IF BIT 8 IS NOT
¢ SET (MSB OF THE BYTE)
c

100 .... PROGRAM WILL BEGIN HERE IF VAR1 BIT 8 IS SET

page 39



4.0 LIBRARY OVERVIEW

PRINT(H)Y ( var, Nob )
This subroutine allows the user to print a variable or array in
hex or ASCII form. The user must define the type of print
desired. PRINT outputs the data in ASCII form as characters 1in
the range 00 to 255. PRINTH outputs the characters in two byte
HEX format (00 to FF). The Nob variable is the number of bytes
transferred to the console. The range is (0000 to 65535).

EXAMPLE:
C *xxkx* SET THE VARIABLES AND DIMENSIONS #*%x%xx%x%
c

INTEGER*2 ARRAY, NUM, I
CHARACTER ASCIIBx120

DIMENSION ARRAY(2,100)
0o 01 1,1,100

ARRAY(1,1)
01 CONTINUE

oo

*kk* ARRAY HAS ASCII CHARACTERS IN IT w%%%x

po 02 1 =1, 100
ARRAY (2,I) = 65+I
02 CONTINUE

c
PRINT (ARRAY(2,1), 100)
¢
C *%% THIS WILL PRINT THE ARRAY (2,1) FIRST 100 BYTES IN ASCII
C ON THE SCREEN
c
PRINTH (ARRAY(1,1), 100)
c
¢ *%% THIS WILL PRINT THE ARRAY (1,1) FIRST 100 BYTES IN HEX
¢ 2 BYTE FORMAT NO SPACES. (FFADFGHH .... )
¢
STOP
END

page 40



5.0 HIGH LEVEL LANGUAGES

5.0 HIGH LEVEL LANGUAGES

This section explains how to use the different lLibraries for
different Llanguages. Not all the Llanguages are covered for this
release, however as the languages evolve the updates will be
available for them. For the Latest release and delivery in the
future contact MetraByte Corporation.

bue to the various Llanguage differences a library has been
generated for each language. A program has been generated to
change the starting ROM segment of the IE-488 board at which the
lLibrary accesses the resident driver. This program is called
CHGVEC.EXE and examples are shown in Chapter 6 of this manual.
ALL the Libraries supplied have a default ROM segment of 0CQ00
hex and need not be changed unless a conflict with other third
party software exists,

5.1 FORTRAN LIBRARY

This Library is for the MicroSoft Fortran compiler version
3.xx and has a library name of IE488FOR.LIB. The Fortran Library
includes the functions ITEST(var, #num) as a means of performing
a logical AND function on any type variable and return the
logical AND of the comparison as the return variable. This
function would be used when using the REQUEST function for the
controllers hardware status register (16 bit integer).

To use the Fortran (IE488FOR.LIB) Llibrary, just compile the
Fortran source as described in the Fortran users manual. The
compiled Fortran Wwill produce .0BJ files which must be Linked
together to generate an executable file (.EXE).

C>link <enter>
MicroSoft Linker version x.xx etc.

Object modules (.0BJ1: filespec
Run File [filespec.EXEJl: <return>
List Map [ NUL.MAP J: <return>
Libraries [ .LIB J]: IE4B8FOR <enter>

At this point the file JIE488FOR.LIB will automatically be
lLinked with the Fortran Library and include all the necessary
subroutines to generate an executable file (filespec.EXE).

C>filespec
this will execute the compiled program.

page 41



5.0 HIGH LEVEL LANGUAGES

5.3 TURBO PASCAL (2)

The file named IE488TUR.COM is the Turbo Pascal file. At
compile time rename this file IE488.CO0M so the Pascal compiler
will know which external file to Link in the code. ALL commands
are available to the user, The user should use the var variable
parameter identifier to pass a four byte pointer on the stack.

CALL SEQUENCE:

type
CMD
DAX
FLG
BAD

string [127];
string [503;
Integer;
Integer;

nmnnamn

var
C:COMMAND = 'OUTPUT 12[$]"
F:FLG 0
B:BAD 0
ViVAX ! !

begin
IE4BB8(var C:CMD,var V:VAX,var F:FLG,var B:BAD);external IE488.COM
end

The D0OS driver extension is not necessary for the TURBO
PASCAL Link since the (IE488.COM) program simulates the basic
interpreter link.

The compilers this model will work with are:

TURBO PASCAL Ver 2.0 and higher

page 42



6.0 CHANGING THE ENTRY SEGMENT L[CHGVEC.EXE]

6.0 CHANGING THE ENTRY SEGMENT LCHGVEC.EXE]

This section explains the use of the program file CHGVEC.EXE
which allows the user to set the lLibrary file segment pointers to
where the user set the memory address switches. The IE488 board
is shipped with the SEGMENT switches set a 0C000:0000 hex
address. If the user desires a different address then the program
CHGVEC.EXE must be run to change the starting locating. If no
address change is anticipated then this section may be ignored.

The Library file must reside in the current directory for
proper operation. The CHGVEC program does not support the PATH
directory function. The user may change the Library file name
before starting to eliminate confusion. The procedure following
will suggest a method for easy identification of the Library.

EXAMPLE
Change the starting ROM address from 0CO00 hex to OCEQOQ
hex for the FORTRAN library IE48BFOR.LIB.

C>COPY IE4B88FOR.LIB I1IE48BFCC.LIB
The library duplication for FCC is Fortran Start CC.
C>\utility\CHGVEC.EXE
load the change vector from the utility directory
follow the directions the program requests.

IE4L88.LIB SEGMENT ADDRESS UPDATE PROGRAM

ENTER FILE TO UPDATE (d:filespec.ext) [DIR for DIRECTORY] ? DIR
ENTER DRIVE LETTER AS (A,B,C,D,E,F) ? A

IE4B88FOR.LIB IE4BB8SML.LIB IE488LRG.LIB IE4B8TUR.COM
CHGVEC .EXE IE488FCC.LIB

ENTERFILETOUPDATE (d:filespec.ext) [DIRforDIRECTORY]?
A:IE4BBFCC.LIB

THE CURRENT SEGMENT IS HEX COO0O
DO YOU WISH TO CHANGE THE SEGMENT {Y/N) ? Y
SELECT ONE OF THE FOLLOWING

1 cooo 6 = D800 11 = ECOO
2 = C400 7 = pCO0O
3 = CC00 - 8 = EOQO
4 = pOO0O 9 = E400
5 = D400 10 = E800

PLEASE ENTER THE SELECTION OR O TO END ? 3
SEGMENT START ADDRESS NOW CHANGED.
c>

The file is now changed and ready to be linked to your program.

page 43



"~ 7.0 PROGRAMMING EXAMPLES S

7.0 PROGRAMMING -EXAMPLES - - gy

The following example uses a Kiethly 175 DVM to col lect data

into a string and display the string on the console. The DVM
address is set to device number 12 decimal.

OO0 o0

e N ]

OO0 OO0

OO OO0

3 O

[ N I o]

01

PROGRAM DVM175
Declare variable integer / string types

INTEGER*Z FLG, BRD, IVAR

The character strings for the command string are variable

Length and are preassigned at 127 bytes in length. The
user may assign any length as long as the entire string will
fit dinto the lLength. ALL command strings begin and end in
QUOTES ("suaaa™) :

CHARACTER*127 SYSCON, REMOTE, ENTER, SVAR

Initialize variables

BRD = 0

FLG = 0

IVAR = 0

SYSCON = '""SYSCON MAD=3, CIC=1, NOB=1, BAQ=&H300"'
REMOTE = '"REMOTE 12"!

ENTER = '"ENTER 12[$]1"!

Initialize the IE-488 interface board the firat time only
CALL IE488 (SYSCON, IVAR, FLG, BRD)

Set the DVM to remote for data collection

CALL IE4B8 (REMOTE, 1IVAR, FLG, BRD)

Initialize string and Collect the DVM data. The variable
SVAR is initialized each time to insure data integrity.

SVAR = * '
CALL IE488 C(ENTER, SVAR, FLG, BRD)

Display the data on the screen with the PRINT ( VAR, #bytes)
CALL PRINT ( SVAR, 19 )

request to repeat the function

WRITE (*,"(A\)') '"+Type 0 to End, 1 to Repeat data 7?7 '

READ (*,11) IVAR

IF (IVAR .NE. 0) GOTO 01

STOP
END

page 44



	TOC: 


